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Abstract 
This document provides derivations of the 73As, 74As and 75As isotopic abundances and 
ratios in an arsenic sample irradiated by high-energy (14 MeV) neutrons for 0 ≤ t ≤ T, 
where T is short compared to the natural decay times of the reaction products (t1/2 (73As) 
~ 80.3 d, t1/2 (74As) ~ 17.8 d). The document also outlines the historic approach used to 
analyze arsenic data from experiments. 
 
Introduction 

The fusion energy production in a nuclear device was historically monitored by adding 
radiochemical detectors at various locations in the device during pre-shot work. These 
“detectors” were usually composed of small quantities of materials with relatively large 
(n,2n) reaction cross sections that could be used to estimate average neutron fluence at 
shot time. A variety of rare elements were used for this purpose including solid yttrium, 
zirconium, europium, bismuth, thulium and lutetium and gaseous xenon, krypton, argon 
and arsenic (usually in the form of arsine gas, AsH3), with the radiochemical products of 
the (n,2n) and double (n,2n) reactions from samples of the debris being measured after 
the shot was fired. The National Ignition Facility (NIF) will also use radiochemical diag-
nostics loaded in the NIF capsule (in particular, arsine gas) to estimate neutron fluences 
during and after the ignition process. 
 
Because (n,2n) reactions have high neutron-energy thresholds, the post-irradiation radio-
chemical diagnostic ratios are related to the high-energy neutron production. In the case 
of an arsenic radiochemical detector, the loaded detector material would be 100% 75As. 
The 75As can undergo an (n,2n) reaction to produce 74As (~ 17.78 day half-life) and the 
74As can undergo an additional reaction with a second neutron to produce 73As (~ 80.3 
day half-life). In this case, the experimentally measured post-irradiation ratio of interest 
will be 73As/74As. This radiochemical ratio is a measure of the fusion energy production, 
but its value will also depend on the energies of the neutrons involved since these reac-
tions have specific energy thresholds below which they will not occur: 
 
  75As + n 

! 

" 74As + 2n; neutron energy threshold ~ 11 MeV, 
 
  74As + n 

! 

" 73As + 2n; neutron energy threshold ~ 8.1 MeV. 
 
Measuring a second order ratio such as 73As/74As allows a probe of the post-irradiation 
debris that does not depend upon the collection efficiency for the experiment, whereas 
measuring a first order ratio such as 74As/75As (loaded), requires that the collection effi-
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ciency for the particular experiment be determined. The collection efficiency is the frac-
tion of the total post-irradiation debris that is extracted or collected from the experiment 
for post-irradiation diagnostics measurements. 
 
It is important to note that, in addition to the material deliberately loaded into a device or 
a capsule during pre-shot work, elemental arsenic can appear elsewhere in the experimen-
tal environment, as arsenic is normally found in parts-per-million quantities in steel, lead 
and aluminum. The experimentally measured 73As/74As must, therefore, be corrected for 
the contribution of these background materials. If (as is usually the case) the mass of the 
loaded detector is relatively small and/or the surrounding experimental structures contain 
significant quantities of arsenic, this correction could be significant. 
 
This document presents derivations of the relative isotopic abundances and ratios for the 
case of an arsenic radiochemical detector irradiated by 14 MeV neutrons along with a de-
scription of the historical approach used to analyze data from experiments. 
 
Isotopic abundances and ratios 
When an arsenic sample with a natural abundance of 100% 75As is irradiated with high-
energy neutrons, nuclear reactions such as 75As(n,2n)74As and 74As(n,2n)73As can be ex-
pected to occur with predictable rates λ 1 and λ 2 , respectively: 

 

! 

75
As

"1= ƒ(nflux, # 1 (n, 2n ))$ % $ $ $ $ $ $ 74
As

" 2= ƒ(nflux, # 2 (n, 2n ))$ % $ $ $ $ $ $ 73
As  . 

In this derivation we will assume that the (n,2n) destruction rate for 75As is the same as 
that for 74As (i.e. λ 1 ~ λ 2 ≡ λ). As shown in Figure 1 at the end of this document, for ar-
senic irradiated by 14 MeV neutrons, this approximation should be good to within ~ 5%.1 
We will also assume that the incident neutron flux can be treated as a constant for 0 ≤ t ≤ 
T, where T is short compared to the natural decay times of the reaction products. 
 
The number of 75As atoms present in the sample at a given time 0 ≤ t ≤ T, n5 (t), will de-
pend on the rate at which they are being destroyed in 75As(n,2n)74As reactions. The rate 
of change in n5 can be expressed as 

 

! 

dn
5

dt
= " # n

5
. (1) 

The number of 74As atoms present in the sample at time t, n4 (t), will depend on both the 
rate at which they are being destroyed in 74As(n,2n)73As reactions and the rate at which 
they are being created in 75As(n,2n)74As reactions (i.e. the rate at which 75As atoms are 
being destroyed). If we neglect the comparatively slow natural decay rate of 74As (t1/2 ~ 
17.8 d), the rate of change in n4 can be expressed as 

 

! 

dn
4

dt
= " # n

4
+ # n

5
. (2) 

                                                
1 An analogous development for situations in which λ 1 cannot assumed to be equal to λ 2 (e.g. Monte Carlo 
simulations in which the full neutron spectrum is taken into account) will be outlined in Appendix A. 
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Finally, the number of 73As atoms present in the sample at time t, n3 (t), will depend on 
the rate at which they are being created in 74As(n,2n)73As reactions (i.e. the rate at which 
74As atoms are being destroyed). If we neglect the comparatively slow natural decay rate 
of 73As (t1/2 ~ 80.3 d), the rate of change in n3 can be expressed as 

 

! 

dn
3

dt
= + " n

4
. (3) 

If λ is assumed to be a constant, Eqn. (1) can easily be solved for n5 (t) by direct integra-
tion; however, since we will be using differential operator techniques to solve for n4 (t) in 
the next step, we will use the same approach to solve for n5 (t) here in order to introduce 
the basic concepts to readers who might not be familiar with them. We will begin by re-
writing Eqn. (1) in terms of the differential operator D ≡ d / dt : 

 

! 

dn
5

dt
" Dn

5
= # $ n

5
 (4a) 

 

! 

" D + #( )n5 = 0 . (4b) 

The so-called “auxiliary equation” for Eqn. (4b) is (m + λ) = 0, which has a unique real 
root -λ . Based on differential operator prescriptions (cf. CRC math handbook), the gen-
eral solution for n5 will thus be of the form 

 

! 

n5(t) = c1 e
"# t
. (5) 

Since the initial amount of 75As in the sample will be n5 (0), the arbitrary constant c1 in 
Eqn. (4b) must equal n5 (0). The final solution for n5 thus becomes 

 

! 

n5(t) = n5(0) e
"# t
. (6) 

While perhaps obvious, Eqn. (6) can be validated for arbitrary times 0 ≤ t ≤ T by simply 
taking its derivative with respect to t and comparing the result to the RHS of the original 
rate equation for n5 (Eqn. (1)): 

 

! 

dn5

dt
= " n5(0) # e

"# t
= " # n5 . ($ ) (7) 

If we substitute the solution for n5 (t) (Eqn. (6)) into Eqn. (2), we obtain 

 

! 

dn4

dt
= " # n4 + # n5(0) e

"# t
. (8) 

Equation (8) thus becomes a first order inhomogeneous differential equation which can 
be solved using differential operator techniques: 

 

! 

dn4

dt
" Dn4 = # $ n4 + $ n5(0) e

#$ t  (9a) 

 

! 

" D + #( )n4 = # n5(0) e
$# t
. (9b) 

Since the inhomogeneity on the RHS of Eqn. (9b) is proportional to 

! 

e
"# t

 (analogous to 
Eqn. (5)), it must be a particular solution to a homogeneous differential equation of the 
form (D + λ) r = 0 for some initial condition r (0) = λ n5 (0), i.e., 
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! 

rp (t) = " n5(0) e
#" t
. (10) 

The relevance of this particular solution for the function r becomes apparent when we 
apply the differential operator (D + λ) to both sides of Eqn. (9b) to obtain 

 

! 

D + "( ) D + "( )n4 = D + "( )" n5(0) e
#" t = D + "( ) rp = 0 . (11) 

We now have a second order homogeneous differential equation for n4 whose auxiliary 
equation, (m + λ) (m + λ) = 0, has repeated real roots of -λ . Based on differential opera-
tor prescriptions, the general solution for n4 will thus be of the form 

 

! 

n
4
(t) = c

2
e
"# t

+ c
3
t e

"# t
. (12) 

The arbitrary constants in Eqn. (12) can be resolved by reviewing the initial conditions 
for n4 and its rate of change (Eqn. (2)). Since the natural abundance of arsenic is 100% 
75As, the initial amount of 74As, n4 (0), will be 0 and its initial rate of change (Eqn. (2) 
evaluated at t = 0) will be λ n5 (0). This means that the constants c2 and c3 must equal 0 
and λ n5 (0), respectively. The final solution for n4 thus becomes 

 

! 

n4 (t) = n5(0)" t e
#" t
. (13) 

Equation (13) can be validated for arbitrary times 0 ≤ t ≤ T by taking its derivative and 
comparing the result to the original rate equation for n4 (Eqn. (2)) : 

 

! 

dn4

dt
= " n5(0)#

2
t e

"# t
+ n5(0)# e

"# t
= " # n4 + # n5 . ($ )  (14) 

If we substitute the solution for n4 (t) (Eqn. (13)) into Eqn. (3), we obtain 

 

! 

dn3

dt
= + " n5(0)" t e

#" t
, (15) 

which can be solved by direct integration (cf. CRC math handbook) : 

 

! 

dn3
n3 (0)

n3 ( t )

" = n5(0)#
2

u e
$# u

du

0

t

" = n5(0)#
2 e

$# u

#2
$# u $1( )

% 

& 
' 

( 

) 
* 
0

t

 (16a) 

 

! 

" n3(t) # n3(0) = n5(0) 1# e
#$ t

# $ t e#$ t( ) . (16b) 

Keeping in mind that that the initial amount of 73As, n3 (0), will also be 0, the final solu-
tion for n3 thus becomes 

 

! 

n3(t) = n5(0) 1" e
"# t

" # t e"# t( ) . (17) 

Equation (17) can be validated for arbitrary times 0 ≤ t ≤ T by taking its derivative and 
comparing the result to the original rate equation for n3 (Eqn. (3)): 

 

! 

dn3

dt
= + n5(0)" e

#" t # n5(0)" e
#" t

+ n5(0)"
2
t e

#" t

= + n5(0)"
2
t e

#" t
= + " n4 . ($ )

 (18) 
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In summary then, the validated solutions for the isotopic abundances of 73As, 74As and 
75As for arbitrary times 0 ≤ t ≤ T are 

 

! 

n3(t) = n5(0) 1" e
"# t

" # t e"# t( ) $ n5(0)
(# t)2

2
# t << 1( ) , (19) 

 

! 

n4 (t) = n5(0)" t e
#" t

$ n5(0)" t " t << 1( )  (20) 

and 

 

! 

n5(t) = n5(0) e
"# t

$ n5(0) 1" # t( ) # t << 1( ) , (21) 

respectively. Note that n3 (t) + n4 (t) + n5 (t) = n5 (0) for 0 ≤ t ≤ T as we would expect (i.e. 
the exact solutions are self consistent and the approximate solutions for λ t << 1 are self 
consistent to within terms ~ (λ t)2 ). Generic (dimensionless) plots of these isotopic abun-
dances and the relative errors associated with using the approximate (λ t << 1) solutions 
are shown in Figures 2a and 2b, respectively, at the end of this document for λ t values 
ranging from 0 to 0.250. 
 
Using the solution set summarized above, the 73As/74As and 74As/75As isotopic ratios for 
arbitrary times 0 ≤ t ≤ T become 

 

! 

n3(t)

n4 (t)
=
n5(0) 1" e

"# t
" # t e"# t( )

n5(0)# t e
"# t

=
e

+# t
"1" # t( )
# t

$
# t

2
# t << 1( ) , (22) 

and 

 

! 

n4 (t)

n5(t)
=
n5(0)" t e

#" t

n5(0) e
#" t

= " t exact( ) , (23) 

respectively. As we will see, the ratio of the number of 74As atoms present in the sample 
at time t to the initial number of 75As atoms in the sample, 

 

! 

n4 (t)

n5(0)
=
n5(0)" t e

#" t

n5(0)
= " t e#" t $ " t " t << 1( ) , (24) 

will also be of interest because of its historic use in the post-irradiation analysis process. 
Generic (dimensionless) plots of these isotopic ratios and the relative errors associated 
with using the approximate (λ t << 1) solutions are shown in Figures 3a and 3b, respec-
tively, at the end of this document for λ t values ranging from 0 to 0.250. 
 
Historic approach used to estimate λT 
The goal during post-irradiation radiochemical analysis of data from arsenic experiments 
is to estimate the value of λ T in the source region based on the isotopic abundances and 
ratios listed in the previous section. We will outline the historic approach here. 
 
In most practical applications, the original arsenic sample will be explosively dispersed 
during the irradiation process, with the different isotopes being uniformly distributed in 
the debris. This will make direct measurements of the absolute number of reaction prod-
ucts virtually impossible; however, since the products are radioactive, the 73As/74As iso-
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topic ratio in a recovered portion of the debris can be measured spectroscopically to pro-
vide an estimate, 

! 

R
3/4

, for n3 (t)/n4 (t) at t >> T and, following corrections for natural de-
cay rates back to t ~ T, an estimate, 

! 

" R 
3 / 4

, for n3 (T)/n4 (T) can be obtained. If the arsenic 
in the original sample was the only arsenic present in the immediate environment of the 
experiment, then the value of λ T in the source region could easily be estimated directly 
from Eqn. (22) evaluated at t = T; unfortunately, this will rarely be the case. In most ex-
periments, there will be other materials in the immediate environment (e.g. Pb shielding), 
which contain trace amounts of arsenic that will also be exposed to high-energy neutrons 
and inseparably mixed into the debris during the irradiation process. Since this will bias 
the estimate for the “sample fraction” of n3 (T)/n4 (T), these backgrounds must somehow 
be factored out of 

! 

" R 
3 / 4

 before it can be used to estimate the value of λ T. 
 
In order to factor the 73As and 74As background contributions out of the corrected value 

! 

" R 
3 / 4

, we begin by breaking the pre-irradiation experimental environment up into a cen-
tral (source) region (which contains the arsenic sample) surrounded by a series of sectors 
with multiple zones that simulate the arrangement of external materials (cf. Figure 4). If 
we label quantities in the source region using a single subscript of “0” and quantities in 
the surrounding sectors and zones using dual subscripts of i = 1, s (sectors) and j = 1, z (i) 
(zones in sector i), then 

! 

" R 
3 / 4

 can be expressed as 

 

! 

" R 3 / 4 =
n3(T) (sample + bkgnd)

n4 (T) (sample + bkgnd)
=

n3,0(T) + n3, i j (T)
j=1

z( i)

#
i=1

s

#

n4,0(T) + n4, i j (T)
j=1

z( i)

#
i=1

s

#
. (25) 

For λ T << 1 (which will typically be the case), Eqns. (19) and (20) indicate that the ex-
pressions for n3 (T) and n4 (T) in Eqn. (25) reduce to 

 

! 

n3(T) (sample + bkgnd) " n5,0(0)
(# 0T)

2

2
+ n5, i j (0)

(# i jT)
2

2
j=1

z(i)

$
i=1

s

$  (26) 

and 

 

! 

n4 (T) (sample + bkgnd) " n5,0(0) # 0T + n5, i j (0) # i jT
j=1

z(i)

$
i=1

s

$ , (27) 

respectively, where λ 0T is the effective value of λ T in the source region, λ i j T ≤ λ 0T is 
the effective value of λ T in zone j of external sector i and n5, 0 (0) and n5, i j (0) (the initial 
number of 75As atoms in the sample and in the surrounding materials, respectively) are 
known or can at least be determined. 
 
Although it can be represented in a number of different ways, the rate constant λ 0 in this 
model is essentially equal to the average neutron flux, F0 , at some characteristic point of 
interest, r0 > 0, in the source region multiplied by the arsenic (n,2n) reaction cross section 
at the neutron energy of interest. The average neutron flux, Fi j , at a point r i j near the cen-
ter of zone j in external sector i is thus related to F0 by an equation of the form 
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! 

Fi j " F
0
Exp{-µ i1! i1 -µ i 2 ! i 2 ...-µ i j (! i j 2)} (r0 ri j )

2 = F
0
Gi j , (28) 

where the exponential term in the geometry factor, Gi j , represents the average transmis-
sion of high-energy neutrons through each successive material leading from the source 
region to the center of zone j and the squared term at the end is a solid angle correction. 2 
The value of λ i j at r i j  will thus be related to λ 0 by 

 

! 

" i j = Fi j# (n, 2n) $ F
0
Gi j# (n, 2n) = "

0
Gi j . (29) 

Using this approximate but very convenient relationship between the λ i j values and λ 0 , 
we see that Eqns. (26) and (27) can be expressed as 

 

! 

n3(T) (sample + bkgnd) "
(# 0T)

2

2
n5,0(0) + n5, i j (0)Gi j

2

j=1

z( i)

$
i=1

s

$
% 
& 
' 

( ' 

) 
* 
' 

+ ' 
 (30) 

and 

   

! 

n4 (T) (sample + bkgnd) " # 0T n5,0(0) + n5, i j (0)Gi j

j=1

z( i)

$
i=1

s

$
% 
& 
' 

( ' 

) 
* 
' 

+ ' 
, (31) 

respectively. 

! 

" R 
3 / 4

 can thus be written in terms of λ 0T as 

  

! 

" R 3 / 4 #
$ 0T

2

n5,0(0) + n5, i j (0)Gi j

2

j=1

z( i)

%
i=1

s

%

n5,0(0) + n5, i j (0)Gi j

j=1

z( i)

%
i=1

s

%

& 

' 

( 
( 

) 

( 
( 

* 

+ 

( 
( 

, 

( 
( 

. (32) 

Astute readers will note that we could simply solve Eqn. (32) for λ 0T as 

 

! 

" 0T # 2 $ R 3 / 4

n5,0(0) + n5, i j (0)Gi j

j=1

z(i)

%
i=1

s

%

n5,0(0) + n5, i j (0)Gi j

2

j=1

z(i)

%
i=1

s

%

& 

' 

( 
( 

) 

( 
( 

* 

+ 

( 
( 

, 

( 
( 

 (33) 

and be done with the analysis at this point if we chose to do so; however, the historic ap-
proach has been to derive an estimate for λ 0T using background corrected estimates for 
n3, 0 (T), n4, 0 (T) and/or n3, 0 (T)/n4, 0 (T) ≡ 

! 

" " R 
3 / 4

, so we will continue by illustrating the 
derivations of these quantities for the sake of historical reference. 
 
Recalling from Eqn. (24) that for λ 0T << 1, 

                                                
2 While the historic approach has been to manually estimate the geometry factors, Gi j , relating Fi j to F0 and 
λ i j to λ 0 in Eqns. (28) and (29), respectively, we note that a much less tedious - and almost certainly more 
accurate - approach might be to use detailed Monte Carlo simulations of the experiment and its immediate 
environment to estimate Gi j values in regions of interest based on average flux ratios (Fi j / F0). This would 
allow analysts the opportunity to account for neutron backscatter by folding the energy-dependent neutron 
spectra in regions of interest together with the full arsenic (n,2n) reaction cross sections. 
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! 

n4,0(T)

n5,0(0)
" # 0T , (34) 

we see that Eqn. (32) can re-expressed in terms of n4, 0 (T) and n5, 0 (0) as 

 

! 

" R 3 / 4 #
1

2

n4,0(T)

n5,0(0)

n5,0(0) + n5, i j (0)Gi j

2

j=1

z( i)

$
i=1

s

$

n5,0(0) + n5, i j (0)Gi j

j=1

z( i)

$
i=1

s

$

% 

& 

' 
' 

( 

' 
' 

) 

* 

' 
' 

+ 

' 
' 

, (35) 

which allows us to generate the following estimate for n4, 0 (T) : 

 

! 

n4,0(T) " 2 n5,0(0) # R 3 / 4

n5,0(0) + n5, i j (0)Gi j

j=1

z( i)

$
i=1

s

$

n5,0(0) + n5, i j (0)Gi j

2

j=1

z( i)

$
i=1

s

$

% 

& 

' 
' 

( 

' 
' 

) 

* 

' 
' 

+ 

' 
' 

. (36) 

If we combine Eqns. (22) and (24) for λ 0T << 1, we see that 

 

! 

n4,0(T)

n5,0(0)
" 2

n3,0(T)

n4,0(T)
, (37) 

which allows us to generate the following estimate for n3, 0 (T) : 

 

! 

n3,0(T) "
(n4,0(T))

2

2 n5,0(0)
" 2 n5,0(0) ( # R 3 / 4 )

2

n5,0(0) + n5, i j (0)Gi j

j=1

z(i)

$
i=1

s

$

n5,0(0) + n5, i j (0)Gi j

2

j=1

z(i)

$
i=1

s

$

% 

& 

' 
' 

( 

' 
' 

) 

* 

' 
' 

+ 

' 
' 

2

. (38) 

If we combine Eqns. (36) and (38), the final (reported) estimate for the “sample fraction” 
of n3 (T)/n4 (T) thus becomes 

 

! 

" " R 3 / 4 # " R 3 / 4

n5,0(0) + n5, i j (0)Gi j

j=1

z( i)

$
i=1

s

$

n5,0(0) + n5, i j (0)Gi j

2

j=1

z( i)

$
i=1

s

$

% 

& 

' 
' 

( 

' 
' 

) 

* 

' 
' 

+ 

' 
' 

, " R 3 / 4 . (39) 

Apart from perhaps using Eqn (22) for λ 0T << 1 to estimate λ 0T as 

 

! 

"
0
T # 2

n
3,0

(T)

n
4,0

(T)
# 2 $ $ R 

3 / 4
, (40) 

this would complete the historical analysis from the radiochemistry perspective. 
 
Regardless of whether one uses Eqn. (33) or its historical equivalent, Eqn. (40), to derive 
an estimate for λ 0T, the total error in the derived value will be very difficult to estimate, 
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primarily due to the myriad approximations involved in factoring the 73As and 74As back-
ground contributions out of the measured value 

! 

" R 
3 / 4

. Unless the experimental environ-
ment is either very simple (e.g. essentially no shielding in the immediate vicinity of the 
source) or very clean (e.g. no measurable traces of arsenic in nearby materials), the total 
error in the derived estimate for λ 0T will likely be dominated by errors associated with 
the techniques used to do the background corrections, in particular, the historic (manual) 
approach used to estimate the geometry factors, Gi j , that relate the average (n,2n) rate 
constants in external sectors, λ i j , to the rate constant of interest in the source region, λ 0 . 
As noted earlier, Monte Carlo simulations of the experiment and its immediate environ-
ment would probably provide more accurate estimates for the Gi j values. 
 
Summary comments 
In this report, we have provided detailed derivations for the 73As, 74As and 75As isotopic 
abundances and ratios in an arsenic sample irradiated by high-energy (14 MeV) neutrons 
for 0 ≤ t ≤ T, where T is short compared to the natural decay times of the reaction prod-
ucts (t1/2 (73As) ~ 80.3 d, t1/2 (74As) ~ 17.8 d). We have also outlined the historic approach 
used to estimate the value of λ T in the source region based on post-irradiation measure-
ments of the 73As/74As isotopic ratio. It is hoped that this document will clear up several 
misconceptions known to be floating around with regard to the exact formulas for the iso-
topic abundances and ratios and prove useful as a primer to those working on data from 
the Nuclear Test Program and/or NIF experiments. Finally, we note that the procedures 
used to estimate the neutron flux and/or yield from a source based on derived λ T values 
have not been discussed here as they are beyond the intended scope of this report. 
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Appendix A 
This Appendix provides derivations of the relative isotopic abundances and ratios for an 
arsenic radiochemical detector for situations in which the reaction rates λ 1 and λ 2 cannot 
be assumed to be equal (e.g. Monte Carlo simulation in which the full neutron spectrum 
is taken into account). The development parallels that presented above. 
 
If the reaction rates λ 1 and λ 2 are treated as distinct quantities, then the rate equations for 
n5 (75As), n4 (74As) and n3 (73As) become 
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and 
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respectively, where we have again neglected the comparatively slow natural decay rates 
of 74As (t1/2 ~ 17.8 d) and 73As (t1/2 ~ 80.3 d). 
 
Using the same techniques as before, the solutions for the isotopic abundances of 73As, 
74As and 75As for arbitrary times 0 ≤ t ≤ T can be shown to be 
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and 
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n5(t) = n5(0) e
"#1 t $ n5(0) 1" #1 t( ) #1 t << 1( ) , (A6) 

respectively. Note that n3 (t) + n4 (t) + n5 (t) = n5 (0) for 0 ≤ t ≤ T as we would expect (i.e. 
the exact solutions are self consistent and the approximate solutions for λ 1 t , λ 2 t << 1 
are self consistent to within terms ~ λ 1 λ 2 t 2 ). Note also that, while the exact solutions for 
n3 (t) and n4 (t) appear to be quite different in form from their counterparts derived assum-
ing that λ 1 ~ λ 2 ≡ λ (i.e. Eqns (19) and (20), respectively), the approximate solutions are 
actually very similar in form. 
 
Using the solution set summarized above, the 73As/74As, 74As/75As and 74As/(initial 75As) 
isotopic ratios for arbitrary times 0 ≤ t ≤ T can be shown to be 
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respectively. Note that, while the exact ratios for n3 (t)/n4 (t), n4 (t)/n5 (t) and n4 (t)/n5 (0) 
appear to be quite different from their counterparts derived assuming that λ 1 ~ λ 2 ≡ λ 
(i.e. Eqns (22), (23) and (24), respectively), the approximate solutions for the ratios are 
again very similar in form. 
 
The radiochemical analysis of debris recovered from an experiment would again begin 
with spectroscopic measurements to estimate n3 (t)/n4 (t) ≡ 

! 

R
3/4

 at t >> T, which would 
then be corrected for the natural decay rates of 73As and 74As back to t ~ T in order to ob-
tain an estimate for n3 (T)/n4 (T) ≡ 

! 

" R 
3 / 4

. Using a notation scheme similar to that used be-
fore, 
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" R 
3 / 4

 can be expressed as 
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For λ 1 t , λ 2 t << 1, Eqns. (A4) and (A5) indicate that the expressions for n3 (T) and n4 (T) 
in Eqn. (A10) reduce to 
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and 
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respectively, where λ 1,0T and λ 2,0T are the effective values of λ 1T and λ 2T in the source 
region, λ 1, i j T ≤ λ 1,0 T and λ 2, i j T ≤ λ 2,0 T are the effective values of λ 1T and λ 2T in zone 
j of external sector i and n5, 0 (0) and n5, i j (0) (the initial number of 75As atoms in the sam-
ple and in the surrounding materials, respectively) are known or can be determined. 
 
If we relate the λ 1, i j and λ 2, i j values in the external zones and sectors to λ 1,0 and λ 2,0 us-
ing geometry factors, G 1, i j and G 2, i j , analogous to those used before (cf. Eqn. (29)), we 
see that Eqns. (A11) and (A12) can be expressed as 
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respectively. 
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 can thus be written in terms of λ 2,0T as 
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which can be solved for λ 2,0T as 
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Note that, since n4 (T)/n5 (0) depends on λ 1,0 rather than λ 2,0 for λ 1 t , λ 2 t << 1 (cf. Eqn. 
(A9)), the analysis procedure would, of necessity, diverge from the historic approach at 
this point (i.e. we would need to find an alternate way to estimate λ 1,0T). 
 
The best way to estimate λ 1,0T might be to use mass spectroscopy to estimate n4 (t)/n5 (t) 
≡ 

! 

R
4 /5

 at t >> T and then correct for the natural decay rate of 74As back to t ~ T in order 
to obtain an estimate for n4 (T)/n5 (T) ≡ 
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4 / 5

:3 
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For λ 1 t , λ 2 t << 1, Eqns. (A5) and (A6) indicate that the expressions for n4 (T) and n5 (T) 
in Eqn. (A17) reduce to 
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and 

                                                
3 Although not traditionally done, this might also be a good way to obtain a second (independent) estimate 
for λ 0 T in the historic analysis procedure where one tacitly assumes λ 1 ~ λ 2 ≡ λ . 
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respectively, which can be re-expressed in terms of the geometry factors G 1, i j as 
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 can thus be written in terms of λ 1,0T as 
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which can be solved for λ 1,0T as 
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Having derived independent estimates for both λ 1,0T and λ 2,0T, this would complete the 
analysis from the radiochemistry perspective. 
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Figure 1: Arsenic (n,2n) reaction cross section data [ENDL99]. For DT fusion neutrons 
(14 MeV), the (n,2n) reaction cross sections for 75As and 74As are very similar (i.e. λ 1 ~ 
λ 2 ≡ λ); however, these rates can differ significantly at lower neutron energies. 
 
 

 
Figure 2a: Dimensionless plots of exact solutions for 73As, 74As and 75As isotopic abun-
dances based on Eqns. (19), (20) and (21), respectively, for 0 ≤ λ t ≤ 0.250. For λ t << 1, 
the curves scale as (λ t)2/2 (73As), λ t (74As) and 1 - λ t (75As). 
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Figure 2b: Relative errors associated with using the approximate (λ t << 1) solutions for 
the 73As, 74As and 75As isotopic abundances for 0 ≤ λ t ≤ 0.250. 
 
 
 

 
Figure 3a: Dimensionless plots of 73As/74As, 74As/75As and 74As/(initial 75As) isotopic 
ratios based on Eqns. (22), (23) and (24), respectively, for 0 ≤ λ t ≤ 0.250. For λ t << 1, 
the curves scale as λ t /2 (73As/74As) and λ t (74As/75As and 74As/(initial 75As)). 
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Figure 3b: Relative errors associated with using the approximate (λ t << 1) solutions for 
the 73As/74As, 74As/75As and 74As/(initial 75As) isotopic ratios for 0 ≤ λ t ≤ 0.250. 
 
 

 
Figure 4: Generic example illustrating how the pre-irradiation experimental environment 
can be modeled as a central (source) region surrounded by a series of sectors with multi-
ple zones in order to calculate the geometry factors, Gi j , that relate the effective (n,2n) 
rates in external sectors, λ i j , to the reference value in the source region, λ 0 . 


